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Summary
Much effort has been recently put into identifying causative quantitative trait nucleotides (QTN)
in animal breeding, aiming more accurate genomic prediction. Among the genomic methods
available, single-step GBLUP (ssGBLUP) became the choice because of its simplicity and
potentially higher accuracy. When QTN are known, they need to be properly weighted, so the
accuracy can be maximized. The weighted ssGBLUP is still under development, and a proper
weighing algorithm is needed. The objectives of this study were to investigate whether
ssGBLUP is useful for genomic prediction when causative variants are known and to verify the
impact of different SNP weighting in ssGBLUP compared to GBLUP. Analyses involved about
4M records for stature of 3M cows. Genotypes were available for 27k sires for a regular 54k
chip (BovineSNP50; Illumina), and imputed with extra 17k sequence variants having largest
effects, including causative variants affecting stature and 32 other traits. Direct genomic value
(DGV) and genomic EBV (GEBV) were calculated using GBLUP and ssGBLUP with regular
genomic relationship matrices (G). Later, G was weighted based on the squared value of SNP
effects or with nonlinear A equations, which limits the changes in SNP weights. In GBLUP, the
residuals were either homogeneous or heterogeneous. Reliability (R2) was assessed from forward
prediction of DGV or GEBV for young sires with at least 10 daughters. The lowest to highest R2

for DGV were by GBLUP with homogeneous residuals, GBLUP with heterogeneous residuals,
and extracted from ssGBLUP. SNP weighting by nonlinear A increased R2 by up to 1.7% with
homogeneous residuals and by up to 0.2% with heterogeneous residuals, compared to
unweighted GBLUP. Linear weighting reduced accuracy in GBLUP and had no effect in
ssGBLUP. Overall, adding 17k causative variants increased accuracy up to 0.6% in GBLUP, but
had no impact in ssGBLUP. Reliability for DGV extracted from ssGBLUP was at least 0.6%
more accurate than any DGV from GBLUP. Linear weighting is not helpful with causative
variants with small effect. Gains with SNP weighting in multistep (GBLUP or SNP BLUP) may
be partly due to corrections in modeling issues associated with pseudo-observations.
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Introduction

The interest in finding and using causative variants for prediction has been recently revived due
to advances in genotyping technologies and decrease in costs. Data from the 1000 bull genomes
project (Daetwyler et al., 2014; Hayes et al., 2014) has been used by different authors with the



objective of incrementing accuracy of genomic prediction and searching for causative variants.
The majority of the research performed in that context used some Bayesian hierarchical models
to estimate breeding value based on multilocus association models as in Meuwissen et al. (2001).
Those methods provide potential advantage for oligogenic traits due to SNP weighting or
selection when compared to marker estimated relationship matrices methods such as GBLUP
and single step GBLUP (ssGBLUP) (Aguilar et al., 2010; Christensen & Lund, 2010; VanRaden,
2008). In commercial evaluations, single step genomic BLUP (ssGBLUP) is becoming the
method of choice due to inclusion of non-genotyped animals without the necessity of de-
regressing breeding values to be used as pseudo-observations, which can bring potential
problems such as double counting of phenotypic and pedigree information, and preselection bias
(Legarra et al., 2014).

To successfully account for causative variants in polygenic traits it is necessary to better
understand the SNP weighting process in the ssGBLUP context. In this way, the objectives of the
present study were to investigate the impact of adding causative variants into GBLUP and
ssGBLUP and to test different SNP weighting methods.

Material and methods

Data was provided by Holstein Association USA Inc. (Brattleboro, VT) and included 3,999,631
stature records measured on 3,027,304 cows, from 1990 to 2016. The total number of animals in
the pedigree was 4,661,872, and genotypes on 54,087 SNP markers were available for 26,877
bulls. In a separate analysis, a total of 16,648 causative variants, reported in VanRaden et al.
(2017) were included in the SNP array, totaling 70,735 markers.

Predictions were made by GBLUP and ssGBLUP. In the first method, the assumption of
the distribution of the additive genetic effect () was , where is the genetic additive variance and
is the genomic relationship matrix (G), as described by VanRaden (2008). The residual (e) was
distributed as , where is the residual covariance matrix. Residual variances were considered
homogeneous with or heterogeneous with , where is daughter equivalent contributions
(VanRaden, 2008). Pseudo observations for this method were daughter deviations (DD)
(VanRaden & Wiggans, 1991). Daughter deviations were calculated with phenotypic data up to
2011, with outputs from the software BLUPF90 and ACCF90 (Misztal et al., 2002).

In ssGBLUP, the additive genetic effects were distributed as , where H is the relationship
matrix combining pedigree and genomic information, as defined in Legarra et al. (2009).
Single-step GBLUP evaluations were done using a repeatability single trait model as described
in Tsuruta et al. (2002).

The G was weighted () to account for unequal SNP variances in both methods, as:
(1)

where M is a centered SNP content matrix, k is number of markers, is the minor allele
frequency of SNP , and is a diagonal matrix of weights; when G is unweighted, , where I is the
identity matrix. In a first approach, weights for the G were calculated as SNP variances: , where
is the SNP effect and is the SNP weight.

Additionally, weights were calculated using the nonlinear A method described in
VanRaden (2008):

, (2)
where is the absolute estimated SNP effect for the marker i and is the standard deviation of the



vector with SNP effects. The maximum change in weights was limited to 10. The nonlinear A
method differs mainly from the linear method by limiting the maximum and minimum changes
in the weights every iteration. Meanwhile, the linear method allows extreme SNP variance.

Additionally, we used the same weights as in VanRaden et al. (2017); this weighting
approach will be defined as PVRW hereinafter. All weighting methods are iterative and, based
on preliminary results, we chose 10 as the ideal number of iterations for this study.

Raw reliabilities were calculated as the coefficient of determination from regressing DD
from 2016 data on GEBV (ssGBLUP) or DGV (GBLUP) from 2011 data. Reliabilities were then
adjusted (R2) following the procedure suggested by VanRaden et al. (2009):

(3)
where is the reliability of DD and PA adjustment was the difference between the published
reliability of parent average and the result of R2 of PA divided by mean reliability of daughter
deviations, as in (VanRaden et al., 2009). The validation group included bulls with no daughters
in 2011 and at least 10 daughters with records in 2016.

Results and Discussion

Reliabilities of genomic predictions from GBLUP and ssGBLUP are in Table 1. Adding 17k
causative variants obtained from a sequence GWA (VanRaden et al., 2017) did not increase
reliabilities in ssGBLUP for stature. However, a small increase of 0.6% was observed for
GBLUP in a scenario with linear weighting and homogeneous residual variance. Although this
was the highest increase, the reliabilities were still less than a scenario with no weights (55.5 vs.
58.7). When no weights were used, the increase in reliability was 0.5 points. Reliabilities were
not improved by adding causative variants when weights were from nonlinear A and
homogeneous residual variance was considered. The greatest reliability from GBLUP (58.9) was
obtained in a scenario with heterogeneous residual variance and weights calculated by VanRaden
et al. (2017).

Although adding causative variants with a proper weight in GBLUP increased
reliabilities, the values from ssGBLUP were 2% greater than the best GBLUP scenario (PVRW).
One reasonable explanation for the discrepancy in results between methods is that ssGBLUP
deals with more information than multistep procedures, especially when de-regressions are used
in the later. Another reason is the explicit contribution of parent average in ssGBLUP. In
addition, some reliability can be lost in multistep because of approximations.

Figure 1 shows reliabilities for all 10 iterations when the causative variants were present
in the data. Iteration 1 has equal weights for SNP. If a plateau is reached, the convergence is
obtained and SNP variances do not change after that, keeping the reliability steady. It is clear
that the convergence was not reached for linear weights. This reveals a problem in using even
when causative variants are in the SNP data. Adding a boundary for changes in SNP variance
may solve this issue. Drops in reliability were not observed for the nonlinear A weights. Instead,
there was a small increase from iteration 1 to 2, meaning using weights was beneficial when
residual variances were considered homogeneous. This increase possibly indicates that some
weighting approaches can help to correct modeling issues. When we improved the model by
considering heterogeneous residual variance and nonlinear A weights, there was no change in
reliability by adding weights for SNP. In all 10 iterations, reliabilities of GEBV from ssGBLUP
were the same.

When large causative variants are included in the model, we expect an increase in



reliability by properly accounting for them. Among the weights we tested, it was clear the linear
approach was unable to detect causative variants, because of the extreme changes in weights in
every iteration. Nonlinear A method avoids extreme shrinkage and inflation and is more suitable
for polygenic traits; however, its implementation for weight updates in ssGBLUP possibly did
not converge at maximum reliability. Overall, the lack of improvement in reliability for
ssGBLUP can be because none of the weights tested in our study were ideal and because the
causative variants may have had only small effects.

This study raises a number of questions. Was any improvement in VanRaden et al. (2017)
due to problems with pseudo-observations? However, similar improvement was obtained by
VanRaden et al. (2017) using simulated data, where these problems were absent. Is the
implementation of GBLUP using nonlinear A equivalent to that as described by VanRaden
(2008)? Is ssGBLUP less sensitive to SNP weighting? But using "perfect" weights with
causative SNP in ssGBLUP was effective (Fragomeni et al., 2017).

Using trait specific G for many traits in ssGBLUP may be expensive and may prohibit
multiple-trait models, unless an appropriate extension to ssGBLUP is developed. Once SNP
effects are known, SNP-based prediction is simpler. A genomic evaluation in Angus includes
multiple-trait ssGBLUP with unweighted G for a regular evaluation, and SNP predictions
derived from GEBV of ssGBLUP for rapid interim predictions (Lourenco et al., 2015).

Conclusion

Gains in SNP weighting in multistep (GBLUP or the equivalent SNP BLUP) may be partly due
to corrections in modeling issues associated with deregressions and improper way to account for
all sources of information. Linear weighting of SNP is not beneficial when causative variants
have small effect. Additional approaches that approximate true weights in ssGBLUP need to be
tested in the future.
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Figure 1 – Reliabilities from direct genomic values obtained by GBLUP (GBLUP) and
ssGBLUP (ssGBLUP-IND) and GEBV obtained by ssGBLUP (ssGBLUP). Genomic
relationship matrix was unweighted in the first iteration for all cases. Weights were calculated
for 10 iterations using non-linear A equations, or were calculated by linear SNP variances (LIN).
Assumption from residual variance in GBLUP was homogeneous (HOM) or heterogeneous
(HET).

Table 1. Raw and adjusted genomic reliabilities and differences from reliability of parent average
(PA), for predictions using GBLUP and ssGBLUP using unweighted G, 3rd iteration of linear
weights (linear W) or 10th iteration of nonlinear A weights (Nonlinear A), using a 54k chip or
70k chip with causative variants. GBLUP was by default using heterogeneous residual variances,
but homogeneous residuals were also tested (HOM).
Item Raw

Reliability
Adjusted
Reliability

Gain from
Parent
Average
(Adjusted)

Parent Average 31.7 38.6 0
ssGBLUP 60.9 76.1 37.5
ssGBLUP PVR Weights 60.8 76 37.4
ssGBLUP - DGV only 59.5 74.3 36.1
GBLUP 54k 58.2 72.8 34.2
GBLUP 70k 58.7 73.4 34.8
GBLUP Nonlinear A 54k 58.4 73.1 34.5
GBLUP Nonlinear A 70k 58.6 73.4 34.8
GBLUP Nonlinear A 70k PVR 58.9 73.7 35.1
GBLUP Linear Weights 54k 56.4 70.6 32
GBLUP Linear Weights 70k 56.3 70.5 31.9



GBLUP Homogeneous Linear Weights 54k 54.9 68.9 30.3
GBLUP Homogeneous Linear Weights 70k 55.5 69.6 31
GBLUP Homogeneous NonlinearA 54k 56.6 70.8 32.6
GBLUP Homogeneous NonlinearA 70k 56.6 70.8 33


